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Linear stress relations for a metal matrix 
composite sandwich beam wi th  any core 
material 
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In this paper, it is shown that shear stresses are developed in the interface between the facing 
material and the core of a sandwich beam. The sandwich beam is composed of a core of any 
suitable material sandwiched between an upper unreinforced metal facing and a bottom facing 
made from metal matrix composite (MMC) material. The shear stress is shown to be a conse- 
quence of the differences in the core and facing elastic moduli. The magnitude of the shear 
stress increases as the core stiffness is made to diminish. The shear stress can exceed the bond 
strength between facing and core, resulting in delamination. Consequently, structural materials 
using this type of construction and particularly flexural experiments should contain a relatively 
stiff core. The magnitude of the facing stresses is shown to be relatively insensitive to the 
assumption or neglect of these shear stresses. In the worst case considered, neglecting the 
interfacial shear stresses results in an overestimation of the compressive and tensile stresses by 
less than 5%. 

1. I n t r o d u c t i o n  
Elsewhere, Schoutens [1] developed a theory to obtain 
stress, strain, and elastic parameters  for a metal matrix 
composite (MMC) sandwich beam with any core 
material. In that analysis, the stress distribution was 
assumed continuous across the sandwich interfaces 
above and below the neutral axis but discontinuous at 
the neutral axis as shown in Fig. la. This assumption 
was convenient for the analysis, but somewhat higher 
stress values in the sandwich facing materials are 
introduced than when the shear stress across the inter- 
faces between facing material and the core is con- 
sidered. In this paper, the theory presented earlier [1] 
is extended to account for this effect. The problem is 
important  in assessing flexural test data of  composite 
materials. 

2. Theory 
The basic assumption is that the strain is everywhere 
continuous and linear across the entire beam cross- 
section as shown by the dashed line in Fig. lb. The 
core material has an elastic modulus E~, the upper 
fa~ing material has an elastic modulus Em and cross- 
s6ctional area Au, and the bot tom facing is an M M C  
of elastic modulus E c and cross-sectional area Ab. The 

u p p e r  and bot tom facing thicknesses are tu and tb, 
respectively, and the beam has a total height H = 
tu + tc + tb, where tc is the core thickness, and a 
width W. The cross-sectional area of  the core above 
the neutral axis is Aura, and below it is Abm. A plus sign 
( + )  is used to designate the side of  the interface inside 
the upper or bo t tom facing, and a minus sign ( - )  
designates the side of  the interface inside the core (Fig. 
1 b). It is further assumed that the interfaces are perfect 
bonds. A bending moment  is introduced in the beam 
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in such a manner  as to keep the surface strains within 
the elastic region and maintain any beam cross-section 
planar. Then, the stresses on either side of  the upper 
interface are 

O-ic + = e+E m (1) 

fli~- = s_E1 (2) 

where the subscript c stands for compression. But at 
the interface, ~+ = s_ = s, so that one obtains from 
Equations 1 and 2 

0-i c + Em 
- ( 3 )  

O'ic _ E l  

which shows the presence of  a discontinuity and, 
therefore, a shear stress at the interface of  magnitude 

r u  = f l ic+ - -  0" ic -  = ,~ (Em - -  El) (4) 

if E m > El. I f  E m = E~, then obviously ru = 0, as it 
should be, and the sign of the shear stress is reversed 
when E m < E~. The same analysis applied to the 
bot tom interface yields 

f l i t+  E c  
- ( 5 )  

f l i t -  E1 

giving a shear stress at that interface of  magnitude 

% = fllt+ - rrit = e ( E c -  El) (6) 

where Zb > 0 if Eo > El, and vice versa, and rb --= 0 
when Ec = E~. Note  that if Ec > E m  > El, then the 
neutral axis is below the geometric centre of  the beam, 
which results in eric + > flit+ and (Tic_ > (Tit . The posi- 
tion of the neutral axis for this kind of sandwich beam 
with any core was calculated by Schoutens [1] to be 
independent of  interfacial shear stresses. 
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Fig. 2 shows the stress components in the core and 
the facing materials with their positions from the 
neutral axis given by [1] 

a = [(1 + ~ ) H -  tu]/2 (7) 

b = [(1 + ~ ) H -  2tu]/3 (8) 

c = [(1 - ~ ) H -  2tb]/3 (9) 

d = [(1 -- c0H - tb]/2 (10) 

e = [(1 + a ) H  -- 2t.]/2 (11) 

f = [(1 -- a ) H  - 2tb]/2 (12) 

where a is a dimensionless fraction used to locate the 
neutral axis. Thus, X, = ~H/2. The neutral axis will 
be below the geometric axis if the composite material 
is on the tensile side of the beam. If  the composite is 

Figure 1 Stress and strain diagrams in a sandwich beam, (a) without 
shear [1], (b) with interface shear. 
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on the compressive side of the beam, the neutral axis 
may not be exactly symmetrical on the other side of  
the geometric axis because the compressive stress- 
strain behaviour in MMCs, particularly matrices with 
continuous unidirectional reinforcing fibres, is not 
exactly the same as the tensile stress-strain diagram. 
This is due to the fibre compressive microbuckling 
that occurs in some MMCs, even within the composite 
elastic strain limit due to residual stresses and other 
effects. 

Calculation of the stresses at the centre of the facing 
material thickness (ac at tu/2 or at at tb/2) requires the 
equation for the sum of  the bending moment, M, or 
[1] 

M = W(Gctua + 3a~mb2 + 3atmC2 + attbd) (13) 

where O-em and 0"tm are shown in Fig. 2. Now, aCre and 
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Figure 2 Distribution of  stresses in a sand- 
wich beam. 



O~m must be related to Oc and eL. As shown in Fig. 2, 
from the similarity of  triangles, (T~r = a~m/b, so 
that 

e 
(Tic- b O-cm' (14) 

and equating this relation to Equation 3 and solving 
f o r  (Tern gives 

bEl (15) O'cm ~ (Tic+ ~? Em 

From the similarity of  triangles (Fig. 2), 

s 
(Tic + = -- (Tr (16) 

a 

and substituting Equation 16 into 15 gives 

= - (Tr (17) O'cm a 

An identical analysis for the lower face gives 

(T~m = ~ F~ (T'' (18) 

Equations 17 and 18 relate the core stress above and 
below the neutral axis to the stresses in the centre of  
the facing material, accounting for the stress discon- 
tinuity across the interfaces. Substituting Equations 
17 and 18 into Equation 13 and solving for a~ gives the 
compressive stress as a function of the tensile stress in 
the composite, or 

3 .I 
O -  c - -  

a t, -t- ~ ~5 

(Tt = - As(T~ (19) 

which accounts for the shear across the interface, as 
can be seen by the presence of  the ratio of  elastic 
moduli. Note that the coefficient A s is also dependent 
upon the value of  c~ through Equations 7 through 10. 

When the core material has a very low stiffness, or 
E~ ~ E m and E~ ~ Er Equation 19 reduces to 

d 
(Tc "~ - -  (Tt, (20) 

a 

Equations 19 and 21 can now be compared to esti- 
mate the importance of  neglecting the shear at the 
interfaces. First, it can be assumed for convenience 
that t~ - t b = t and, moreover,  that 

3 c 3 3 b 3 H 
(22) 

2 d 2 - 2 a 2 - 9 

when using Equations 7 to 10. Letting Ar = E1/E~ and 
Am = E l / E m ,  

A~ 1 + A ~ H / 9 t  

A - 1 + k m H / 9 t "  (23) 

An upper and a lower limit for this ratio can be 
estimated when it is assumed that E c -~ 3Era for the 
upper limit, and when the core is a metal foam of small 
cell dimensions [2], E f f E  m ~ 1/17. Thus, A m --- 1/17 
and Ac -- 1/51, so that Equation 23 yields A s / A  = 

0.959 if t ~- H / IO .  This means that neglecting shear at 
the interface results in an overestimation of  the com- 
pressive stress in the upper face of  about  4% and an 
overestimation of the tensile stress in the bot tom face 
of the same amount.  When considering a weak core, 
or assuming E f f E  m .,~ 1/100 and E~ -~ 3Era, then Ac ~- 
1/300 and A m ~ 1/100, so that A~/A  ~- 0.992. This 
results in an overestimation of the compressive stress 
of  0.7% and an overestimation of  the tensile stress of  
the same magnitude. 

The tensile stress in terms of the bending moment  
can now be calculated by substituting Equations 17 
through 19 into the moment  Equation 13 and solving 
for the tensile stress. This gives 

(T~ = 2adM/(W{a[2tbd2+ 3(EE--~[)C31 
,[.,..+ 

The bending moment  can be obtained directly from 
surface strain measurements. Elsewhere [1], it was 
shown that the surface compressive and tensile strains 
8~ and Stb , respectively, can be related to the radius of  
curvature of  the beam, or 

H 
e~u = (1 + ~) 2-~ (25a) 

assuming that tu = tb. However, for a very weak core, 
the danger exists that the facing can delaminate from 
the core since the shear stress r,  or "g b can exceed the 
bonding strength. Thus, as E~ decreases, r u and % 
increase. This is one reason for having a relatively 
strong core in a sandwich beam flexural test. 

Previously, Schoutens [1] obtained a relationship 
between (Tr and o-~ in which the shear stress was not 
considered, or 

3 c 3"] 
d ( t b -~ "2 ~ ; 

(Tr = a ( 3 b 3 )  at = -A(Tt ( n ~  

(21) 

which shows the absence of  the effects of  the ratio of  
elastic moduli of  the material composing the beam. 

H 
8tb = (1 - -  ~ )  ~ ,  ( 2 5 b )  

and taking either of  Equation 25, solving for r and 
substituting into M = E I / r  for a beam in pure bend- 
ing, gives 

2 E I  
M - ecu (26a) 

(1 + a) H 

o r  

2 E I  
M - (1 -- ~ ) H  8tb (26b) 

where E is the modulus of  the beam and I is its 
moment  of  inertia with respect to the neutral axis. To 
arrive at either of  Equations 26, the beam span in 
bending is assumed of such magnitude that the shear 
contribution is assumed negligible. Zweben [3] has 
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shown that good results are obtained when 

6~ 1 . 2 ( E )  (~/~/)2~ 1 (27) 
~b 

where 6~ and 6 b are the contributions to the beam 
deflections due to shear and bending, respectively, G is 
the shear modulus, L is the beam span between sup- 
ports, and H is the beam height. If condition 27 is 
satisfied, then shear contribution can be neglected. In 
testing for material properties in flexure, particularly 
composite properties, it is desirable to satisfy con- 
dition 27; otherwise, large differences result between 
flexure and tensile test results [3]. 

The surface stresses are the highest in the beam. 
These stresses can be determined, with little error, 
from the values given by Equations 21 and 24 assum- 
ing that the change in the stress value across the facing 
material thickness is uniform and linear. Therefore, 

Gcs Gc - (28a) 
a + tu/2 a 

O-ts (7" t 
- (28b) 

d + tb/2 d 

from which 

. I, = ~c -= ~o,E (29) 

fits = 1 ~2 i = '  ~tbE (30)  t 

where acs and at~ are the surface compressive and 
tensile stresses, respectively, a0 and o- t are given by 
Equations 21 and 24, respectively, and E is the sand- 
wich beam elastic modulus. 

3. Conclusions 
The interfaces between the upper and bottom facing 
material of a sandwich beam and the core develop 
shear stresses during flexure. These shear stresses are 
the result of  the difference in the elastic moduli of  the 
facing and core. In this analysis, it is assumed that the 
sandwich beam is composed of a metal upper face, a 
core, and a bot tom face made from high-stiffness, 
high-strength MMC material. During bending, the 
neutral axis is below the geometric beam centre line if 
the composite facing is in tension, and vice versa. The 
magnitudes of the stresses induced in the facing 
materials do not depend significantly on whether or 
not one assumes the presence or absence of this shear 
component,  the error being at most less than 5%. 
However, the presence of  the shear stresses at the 
interface cannot be neglected because their mag- 
nitudes grow as the core material stiffness is made to 
diminish relative to the facing material stiffnesses. 
Consequently, for a weak core, the shear stress mag- 
nitude can exceed the interface bonding strength. This 
is one reason for having a relatively stiff core in a 
sandwich beam. 
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